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Abstract

This research combines recent advances in the realized volatility literature and three
economically motivated variables, related to well-known hypotheses of commodity
volatility determinants, to improve the volatility forecast of commodity futures con-
tracts. The three forecasting variables are the term structure slope (theory of storage),
the time to maturity (Samuelson hypothesis), and a seasonal measure that proxies
for the supply and demand uncertainty (uncertainty resolution hypothesis). 1 first
assess the empirical contribution of these variables to explain realized volatility and
find support for the theory of storage and uncertainty resolution. I uncover a pos-
itive relationship between time to maturity and volatility, in contradiction with the
Samuelson hypothesis. Second, I compare the performance of the HAR (Corsi, 2009),
HEXP (Bollerslev, Hood, Huss, and Pedersen), 2018a), HARQ (Bollerslev, Patton, and
Quaedvlieg, 2016), and time-varying parameter HAR-TV (Chen, Gao, Li, and Sil-
vapulle, 2018)) models, with and without the above-mentioned economic variables. I
evaluate the in- and out-of-sample performance of these forecasts in econometric tests
and find that the inclusion of economic variables is beneficial for long-term horizons
only. Finally, I test the validity of these forecasts to improve expected shortfall mod-
eling. The inclusion of economic variables provides mixed results.
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1. Introduction

The realized volatility framework introduced by |Andersen and Bollerslev| (1998alb) de-
livers higher forecast accuracy than generalized autoregressive conditional heteroskedasticity
(GARCH) or stochastic volatility (SV) models for spot and futures prices of stocks, bonds
and currencies. However, the literature on realized volatility for commodity futures is scarce.
While commodities share many commonalities with financial assets, the real nature of the
underlying assets introduces some specificities such as the existence of physical inventories.
Hence, I ask whether introducing economic variables that characterize individual commodity
futures contracts helps modeling their realized volatility.

I start the analysis with a regression model where I test the explanatory power of the
slope of the term structure (a proxy for inventories), seasonality (uncertainty resolution), and
time to maturity (Samuelson conjecture), on the realized volatility. The empirical analysis
is based on three groups of commodities (agriculture, energy, and metals). I select three
commodity contracts in each group, over the 2008-2019 periodE] Consistent with the theory
of storage, I show that the slope of the term structure is related to the realized volatility. I
separate the contango and backwardation states, and find that the corresponding coefficients
are statistically significant at the 1% level for all contracts but soybeans. Yet, the sign of
the slope coefficients support a weak form of the theory of storage for five futures contracts.
More specifically the full term structure-volatility relationship is present in four out of the
nine contracts. I capture seasonal variations of the realized volatility in futures contracts,
with dummies reflecting critical months. In line with economic predictions, this variable is
economically and statistically significant at the 1% level for agricultural products (seasonal
crops) and natural gas (typically higher heating demand in winter). Finally, I find that
the time to maturity, a controversial variable related to the functioning of futures markets
themselves rather than commodity fundamentals, is a positive determinant of commodity
futures volatility, statistically significant at the 1% level for eight out of the nine commodities
(crude oil contract statistically insignificant).

Given the strong and long-lasting autocorrelation of realized volatility, I introduce several
time-series specifications in the baseline model. I find that all economic variables continue to
marginally improve future realized volatility (RV) forecasts. First, I introduce the heteroge-
neous autoregressive RV (HAR) of |Corsi| (2009)). The motivation for using the HAR is based
on the econometric performance (both in- and out-of-sample), and justified by the general

long-term memory that commodity futures RV also exhibit. I find that this combination

!The agriculture contracts are corn, soybeans, and wheat. The energy contracts are crude oil, heating
oil, and natural gas. The metal contracts are gold, copper, and silver.



reduces the in-sample error and weakly improves the out-of-sample forecast accuracy. 1 ad-
ditionally include the economic variables in competing models, the HEXP of [Bollerslev et al.
(2018a)), where the lagging terms are exponentially smoothed, and the HARQ of Bollerslev
et al.| (2016)), which accounts for measurement errors, approximated by the realized quartic-
ity. The inclusion of the economic variables in these models produces a similar, marginal,
improvement of the explanatory power. Finally, I test the baseline model with the inclusion
of autoregressive variables and measurement errors in time-varying (TV) parameter models
(HAR-TV and HARQ-TV see, e.g., Casas, Ferreira, and Orbe, 2019, Chen et al| [2018)). The
forecasting power improvement resulting from the inclusion of the economic variables in this
context is negligible. In sample, the best performing model for one-day ahead forecasts is the
HARQ-TV, whereas the HAR-TV outperforms all other specifications for the one-week and
one-month horizons. Out-of-sample tests however, show that the HARQ dominates when
the forecast horizon is lower than one-week, whereas the EVHARQ-TV (nesting economic
variables) yields the most accurate forecasts for the one-month horizon. Finally, I use the
one-day-ahead out-of-sample forecasts in multi-quantile VaR regressions to extract expected
shortfall for up to six coverage levels. I jointly test the parameters for the forecast bias and
find that the simple autoregressive models (HAR and EVHAR) provide the lowest rejection
and therefore, the higher forecast accuracy.

This research departs from the existing literature on two aspects. First, commodity
futures are widely overlooked in the RV literature, in comparison with other asset classes
(stocks, indices, bonds, and currencies). In particular, the research looking at non-energy
products, agricultural and to a lesser-extent metals, is virtually nonexistent. Second, I
introduce economically-motivated, exogenous, variables in the RV framework which is non-
standard, as most of the existing research aims to improve RV modeling using autoregressive
specifications.

The contribution of this article is threefold. First, I scrutinize the performance of stan-
dard autoregressive volatility models for commodity futures. 1 verify that, as for other
asset classes, the RV approach is entirely valid for all commodities. Second, I introduce
non-autoregressive variables in the RV framework and find that the addition of exogenous
information improves the explanatory power of RV models in-sample as well as out-of-sample
forecasts. Finally, I reconsider the determinants of commodity futures volatility. As the RV
provides a better approximation of the true latent volatility process than the (G)ARCH and
stochastic volatility approaches, the reexamination of such variables in this context is partic-
ularly relevant; see, |Andersen and Bollerslev| (1998b)). In the following tests, I highlight the
contracts peculiarities, and find strong and medium support for the uncertainty resolution

and theory of storage, and strongly reject the Samuelson hypothesis.



The remainder of the article proceeds as follows. Section 2 presents the literature review
on RV and, more specifically, its economic determinants. Section 3 presents the research
design, including the data organization and models to test. In section 4, I discuss the
empirical results. Section 5 compares the performance of out-of-sample forecasts from both

autoregressive and economic variable models in tail risk management. Section 6 concludes.

2. Previous research and hypotheses

Currently, there are three main econometric approaches for volatility modeling. First,
the (generalized) auto-regressive conditional heteroscedasticity ((G)ARCH) of |[Engle] (1982)
and Bollerslev| (1986]) expresses the conditional volatility as a linear function of its own
past realizations and squared innovations. Second, the Stochastic Volatility (SV), where the
volatility follows a diffusion process (see, e.g., Heston, |1993), and possibly jumps (see, e.g.
Bates|, 1996)E]. The daily realized variance is defined as:

I/A

R‘/zf—l (A) = Z (ri,t-i-ij) ) (1)

j=1

where 1/a is the number of observations in one day and 73 represents the squared change
in intra-day (log) prices; see, e.g. |Andersen, Bollerslev, and Diebold| (2007). |/Andersen and
Bollerslev| (1998a) show that the realized variance is the limit of the integrated variance, as

the frequency increases to infinity:

I RV (8) = [ a3 ®)

t<s<t+1

The right hand side of Eq. is the integrated variance, with diffusion process o, and
discrete jumps of size k. Therefore, disentangling jumps from the continuous process is an
empirical issue; see, e.g., |Alt-Sahalia (2002, 2004). The realized volatility is the square root
of the realized variance.

Generally, RV is computed using equally-spaced observations, the time intervals ranging
from 1 to 30 minutes; see, e.g., Andersen, Bollerslev, and Meddahi (2011b), Ait-Sahalia,
Mykland, and Zhang (2005). |Patton and Sheppard| (2015) use consecutive transactions.
When 5-minute RV is taken as the benchmark, |Liu, Patton, and Sheppard (2015)) find little

evidence that it is outperformed by any other measure. When using inference methods

2Recent reviews of the literature are available for both the GARCH and SV models; see [Bauwens,
Laurent, and Rombouts| (2006]), [Bollerslev| (2008), Broto and Ruiz{ (2004])



that do not require to specify a benchmark, there is some evidence that more sophisticated
measures outperform. For example, Andersen et al. (2011b) propose several estimators.
Two are of particular interest: a) the average estimator and b) the optimal estimator. The
linear forecasts obtained by averaging standard sparsely sampled realized volatility measures
generally perform on par with the best alternative robust measures. Overall, 5-minute RV
is difficult to beat, and the most classic definitions of the realized volatility are either the

standard deviation of intraday (log) price changes or its log.

2.1. Stylized facts

Changes in consecutive (log) prices of financial assets, including stock, bonds and cur-
rencies, present common characteristics that are also shared by commodities futures. These

stylized facts can be summarized as follows:

a. Standard deviation completely dominates the mean over daily and weekly return hori-
ZOns.

b. Daily, weekly, and monthly horizons show excess kurtosis (with respect to a normal
distribution).

c. Squared (and absolute) returns are strongly auto-correlated.

d. There are periods of high volatility (volatility clustering).

e. Outliers and jumps are more frequent than they should be (with respect to a normal
distribution).

Despite the above-mentioned commonalities, three main differences between commodity
futures and futures on stock indices have been documented in the literature. The first
noticeable discrepancy is the inverse asymmetric reaction between commodity futures price
and volatility or the “inverse leverage effect”, arising from shocks on inventories. Typically,
when the resources are scarce, the supply on the corresponding market becomes inelastic, and
a decrease in one unit of inventory leads to a dramatic price upward revision; see |(Carpantier
(2010), Carpantier and Dufays| (2012), Carpantier and Samkharadze (2012), Ng and Pirrong
(1994]).

The second difference with respect to other financial assets has to do with the underly-
ing stochastic process that generates price changes. Commodity futures price changes are
positively skewed and, contrary to stock returns, this skewness strongly shows up at the
contract level; see, e.g., |Gorton and Rouwenhorst| (2006). The third difference is that, at
least as a first approximation, changes in (log) prices do not show any significant trend; see
the one-factor model presented in |Schwartz (1997, p. 926).|ﬂ

3Commodity (log) prices follow a (mean reverting) Ornstein-Uhlenbeck process.
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2.2.  The economic determinants of RV

The theory of storage states that the relation between volatility of storable commodities

and the level of inventories is convex and negative; see, e.g., Brennan| (1958)), [Kaldor| (1939),
‘Working| (1933). More recent versions of the theory of storage in equilibrium (e.g.
land Laroque), [1992) also predict this link, which is confirmed empirically; see
and Samkharadze| (2012)), Fama and French (1988), Geman and Nguyen| (2005), Geman and|
(Ohana (2009), Ng and Pirrong| (1994). Interestingly, Kogan, Livdan, and Yaron (2009)

extend the prediction of a non-monotonic, convex, relationship between volatility and inven-

tories, due to investment constraints. They confirm empirically the existence of a “v-shape”

relation; see also |[Haugom, Langeland, Molnar, and Westgaard (2014). To summarize, both

low and high inventories lead to high volatility. Inventories are difficult to measure at the
aggregate level with a daily frequency. A large strand of literature highlights the posi-

tive/negative relation between the slope of the term structure and inventories, and find

strong empirical support; see, e.g., Gorton, Hayashi, and Rouwenhorst| (2012)).

Samuelson| (1965, |1976) conjectures that the volatility of commodity contracts is higher

when the remaining time to maturity is lower. Despite many empirical tests, the results
concerning this conjecture are contradictory. On the one hand, Rutledge (1976) and
matikos and Saunders| (1986)) do not find evidence of any increase in volatility. On the
other hand, Milonas| (1986) and |Galloway and Kolb| (1996) find support for all commodi-

ties. Consistent with the Samuelson hypothesis, Bessembinder, Coughenour, Seguin, and|

Monroe-Smoller| (1996 develop a model where the spot price has negative covariance with

the slope of the term structure. This implies a temporary price change, which is more likely
to occur in real assets than in financial assets. Indeed, recent empirical tests on the NIKKEI
(Chen, Duan, and Hung, 2000)) and on the SP-500 futures (Moosa and Bollen, [2001) strongly

reject the Samuelson conjecture, whereas |Bessembinder et al.| (1996) find empirical support

mainly for the agricultural commodity futures.

‘Anderson and Danthine| (1983) hypothesize that the key determinant of volatility is not

the time to maturity but, instead, the time at which the production uncertainty is resolved.
The uncertainty resolution, which occurs seasonally, for instance at the end of a crop when the

supply is publicly known, theoretically commands more volatility. Conversely, the volatility

should be lower when the uncertainty is resolved; see also|Anderson (1985). This seasonality

should be particularly visible for agricultural products whose production is concentrated in a

single annual harvest in the northern hemisphere; see the statistics from the US Department



of Agriculture.m It should also be present for the natural gas contract as its term structure
has also a strong seasonal component due to the demand rising every winter in the northern
hemisphere. Despite the fact that these turning points should firstly affect the cash market,
Anderson and Danthine (1983)) additionally show that the link between the cash and futures
markets ensure the volatility diffusion from the former to the latter. The research also shows
that intangible commodities like electricity or those whose exchange value is higher than
their consumption value, such as gold or silver, behave more like traditional financial assets.
Anderson| (1985), (Galloway and Kolb| (1996]), Khoury and Yourougou| (1993)) find a seasonal
component in volatility, combined with a time to maturity effect.

To summarize, I state my hypotheses as follows. The volatility of commodities futures:

a. is positively related to the absolute value of the slope of the term structure.
b. increases when the time to maturity decreases.

c. is seasonal for commodities that show seasonality in the supply or the demand.

2.3.  Endogenous determinants of RV
2.3.1.  Univariate series

The introduction of a parsimonious autoregressive model dates back to [Corsi (2009) [f
The main idea of this paper is that the RV on day ¢t depends on past values of the RV
at time ¢t — 1, t — 2,..., t — p where p can be very high (20 or more) suggesting a long-
memory process. However, this process is mean reverting toward a long-term component.
Therefore, the transitory component of the daily variance relates to the RV at ¢t — 1 and the
introduction of two additional components (weekly and monthly RVs) smooths the dynamics
of RV. Altogether, these variables give a parsimonious representation (HAR) of the typical
volatility exponential decay (see, e.g. |Andersen, Bollerslev, Diebold, and Labys, 2003). In
the empirical part of the paper, Corsi (2009) estimates the model with the SP-500, the
USD/CHF exchange rate, and a T-Bond. Based on the BIC criterion, the one-day ahead
in-sample performance of this model is higher than that of an AR (22). This clearly shows
that the HAR (3) model is parsimonious. Out-of-sample, the model steadily outperforms
the short-memory models (AR (1) and AR (3)) at the one-day, one-week, and one-month
horizons. In addition, it is on par with an (long-memory) ARFIMA model. Moreover, the

superior performance of the ARFIMA and HAR (3) increases with the forecasting horizon.

‘https://www.nass.usda.gov/

®Although soybeans production is also very large in the southern hemisphere, the underlying product
specifications and delivery locations of the contract studied are all in the northern hemisphere.

6Note that the first version of the paper was available in 2003.
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Several versions of the model have been proposed using the realized volatility, its log, and
its square. |Andersen et al.| (2007) show that the log of RV is the closest to normality and
that jumps are negligible in terms of RV forecasting. Microstructure effects could introduce
measurement errors, which lead to biased coefficients when a linear model is used. Never-
theless, the residuals of log RV are still heteroskedastic, and the parameters of the HAR are
not stable over time; see Buccheri and Corsi| (2019)).

Using a simple linear process could be insufficient for at least three reasons: a) jumps,
b) measurement errors, and c¢) time-varying parameters. Andersen, Bollerslev, and Huang
(2011a)) consider that RV has a continuous part that is well described by the HAR model,
two jump components (day/night) and a night component that follows a GARCH (1,1),
leading to the HAR-CJN model. The out-of-sample performance of the HAR-CJN model is
slightly higher than that of the HAR.

Given the measurement error that plagues the estimation of RV, Bollerslev et al.| (2016)
introduce the “realized quarticity” (variance of the RV) in the HAR model. The authors write
an extension (HARQ model) where the coefficients are a linear function of the quarticity. The
idea is to put less weight on past high values of RV, that is when RV is subject to potential
mismeasurement. By the same token, this variable is supposed to capture microstructure
effects, and jumps as well. However, HARQ shows also signs of misspecification. As an
alternative, (Corsi and Reno (2012) and Patton and Sheppard| (2015) examine whether the
RV reacts symmetrically to positive and negative shocks that affect prices, i.e., the so-called
“leverage effect”. |Casas, Mao, and Veiga (2018)) nest both models. |Cipollini, Gallo, and
Otranto| (2017) show that HARQ is observationally equivalent to another model where a
quadratic term in RV accounts for a faster mean reversion when volatility is high. They
argue that the realized quarticity and a time-varying mean seem to play a more important
role than measurement errors. In these models, the time-varying coefficients are linear
functions of the realized quarticity (parametric specification). (Chen et al.| (2018) generalize
this approach by considering a log HAR model with time-varying coefficients of unspecified
functional forms (HAR-TV). These coeflicients are approximated with a local linear function
of time. |Casas et al.| (2018) extend |Chen et al|(2018) in two directions. First, they consider
a potential asymmetric reaction of RV to negative shocks. Second, the coefficients are no
longer a local linear function of time but a linear function of the realized quarticity (semi-
parametric approach). Unfortunately, the forecasting performance of the RV is not examined
specifically since the main purpose of the paper is to forecast the stock market.

Bekierman and Manner| (2018)) take a different stance. They propose a state-space repre-
sentation of the HAR model that can be augmented by functions of the realized quarticity.
They attribute the higher performance of the state-space HAR models to the fact that the re-



alized quarticity is a noisy proxy for the true measurement error, which is likely to be greater
in periods of high volatility. Furthermore, their state-space models are able to capture other
sources of time variation in the parameters that is not explained by the measurement er-
ror. Buccheri and Corsi (2019)) generalize the state-space representation approach in several
directions. Their state-space model allows for a time-varying error, and considers that the
updated parameters depend on the level of uncertainty that is based on the score function.
This model (SHARK) appears to perform very well, both in- and out-of-sample, but there

is no straightforward extension when several assets are considered simultaneously.

2.8.2. Multivariate series

When several assets are considered simultaneously as in portfolio optimization, the co-
variance matrix must be accounted for. As already documented with GARCH models, when
left unconstrained, the matrix requires the estimation of a large number of parameters. If K
parameters are estimated for each equation, the number of equations being N x (N — 1) /2,
the total number of parameters is K X (N x (N — 1) /2). The idea is to impose constraints so
that the number of parameters is reduced dramatically; see Bollerslev et al.| (2018a), Boller-
slev, Patton, and Quaedvlieg (2018b), Buccheri, Bormetti, Corsi, and Lillo (2020)), (Chiriac
and Voev (2011). |Chiriac and Voev] (2011)) use HAR for each term of the matrix so four
parameters are estimated. They apply their methodology to six stocks, and estimate a total
of 60 parameters (15 linear regressions with four parameters each). The extension of this ap-
proach to more general HAR models (HARQ) is straightforward, and the estimation is easy
as soon as the number of assets is not too big. Bollerslev et al.| (2018b)) apply this procedure
to 10 stocks to construct the minimum variance and minimum tracking error portfolios. The
turnover is reduced and economic gains are around 170 basis points per year, under realistic
assumptions in terms of risk aversion.

Buccheri et al.| (2020) assume that log prices follow a random walk and asynchronicity
is treated as a missing value problem. The structure of the covariance matrix warrants it
is semi-definite positive. The time-varying matrix is assumed to be the same across assets;
see |[Engle| (2002a). Therefore, all available data are used when filtering the covariances,
and market microstructure noise is taken into account. The full dynamics of the process is
described with a Kalman filter and the estimation is performed through maximum likelihood.
When applied to 10 NYSE stocks, the authors show that opening hours are dominated by
idiosyncratic risk, and that a market factor progressively emerges in the second part of the
day.

Bollerslev et al.| (2018a)) propose a model in which the realized volatility in excess of the

long-term volatility is a linear function of a set of exponentially smoothed transforms of



lagged values of the RV. In one version of the model, coefficients relative to the same asset
class (i.e., commodities, stocks, bonds, currencies) are constrained to be equal. In terms of
forecasting, the performance of their model is remarkable.

The alternative is to consider a latent factor model that spans the RV space as in [Boller-
slev, Meddahi, and Nyawa| (2019). The authors provide a new factor-based estimator of
the realized covolatility matrix, applicable when the number of assets is large and the high-
frequency data are contaminated with microstructure noises. From the covolatility matrix of
SP-500 stocks, they derive the minimum variance portfolio. Compared to other practically
feasible competing covolatility estimators, including 1/n, this method produces the lowest
ex-post variation; see, e.g.,[DeMiguel, Garlappi, and Uppall (2009)).

Significant progress has been made in two distinct directions. First, in a univariate
setting, more sophisticated specifications have been developed. Their main purpose is to
clean the data from microstructure effects, and to account for an asymmetric reaction to
positive and negative exogenous shocks. The focus of empirical applications has been on
futures contracts, stock indices, currencies, individual stocks, and bonds. While the speed
at which parameters are estimated is not a problem for univariate series, this issue becomes
serious when covariance matrices are estimated. Second, the appropriate model depends
very much on the financial application. When dealing with portfolios, whose composition is
changing over time, a model for the covariance matrix is required since the financial series
are correlated. Typically, this is the case when optimizing portfolios (minimum variance
portfolio). For pricing application, univariate series are the ones that matter to forecast
the implied volatility (pricing derivatives) or compute the value at risk (expected shortfall)
for a single asset. For risk management, the composition of the portfolio is known ex-ante.
Therefore, a single series of volatilities is constructed, and the corresponding univariate

model is estimated.

3. Methodology

I start with a linear model that incorporates the economic variables discussed in Section
[2.2] Then, I test whether these economic determinants have explanatory power beyond that
of the past realizations of RV. Finally, I test several specifications allowing coefficients to

vary over time.



3.1. Baseline model

To check whether the economic determinants of RV have any explanatory power beyond
that of its own past realizations, I introduce three economic variables observable at a daily
frequency. First, consistent with the theory of storage, I consider the slope of the term
structure. Since there is a maturity gap across contracts, I normalize the slope. Second, to
test the “v-shape” hypothesis (Kogan et al., [2009)), I use a methodology similar to Haugom
et al. (2014) and add a “backwardation” dummy. Third, to test the Samuelson hypothesis,
I compute the log of the time to maturity in seconds for each daily observation, crossing the
time stamp with the contract maturity information available in the full ticker[] I set it on
a calendar basis, as I assume that the latent maturity information exists even when futures
are not traded

[Insert Figure |1 here]

Finally, to test the uncertainty resolution hypothesis, I introduce monthly dummies for the
corn, soybeans, wheat, and natural gas contracts to control for seasonal effects. The monthly
dummies are set in July for the agricultural products, which corresponds to the harvest month
of the soft red winter wheat contract in the US (and more generally for winter wheat in the
northern hemisphere). It also corresponds to the “filling” month for corn and soybeans in
the northern hemisphere, which is more critical than the subsequent harvesting months. For
the natural gas, I select January which corresponds to the coldest month and to the highest
consumption month in the US, historically. This choice also matches the unconditional sea-
sonal pattern of RV that is displayed in Figure

RVey =ape+ oy Moy + o TMey + a3 SLep1 + o eBey—1+

(3)
a5,ch,t—1 X SLc,t—l + 6c,t7

where M., is a dummy equal to “1” during the critical month of the corresponding contract
and to “0” otherwise, 7M., is the (log) time to maturity, SL.;_ is the annualized (log) term
structure slope between the nearby and first deferred contract, and B.;_; is a dummy equal
to “1” (“0”) when this slope is in backwardation (contango). For the detailed computation
procedure of the variables, see Appendix, Table [A2]

"Bessembinder et al.| (1996) consider the square root of time-to-maturity instead of the log.

8This is also the methodology underlying the VIX computation. In unreported robustness tests I also
use business time with virtually no differences in the results.

9For supply-related information of agricultural products see, https://ipad.fas.usda.gov /countrysummary /.
For demand-related information of the natural gas see, https://www.eia.gov/outlooks/steo/report /natgas.phpl
For the unconditional level of historical RV of other contracts see Appendix, Figure @
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3.2.  The autoregressive components of RV

Next, I control for the autoregressive component of the log realized volatility (RV) by
introducing five different models, i.e., the HAR (Corsi, [2009), the HEXP (Bollerslev et al.
2018al), the HARQ (Bollerslev et al.,[2016), the HAR-TV (Chen et al.,[2018), and the HARQ-
TV, which nests the two latter. I choose these models because they are parsimonious and
are competitive in terms of explanatory power and forecasting ability. These models are
estimated with seemingly unrelated regressions (SUR), which make them easily comparable.

Therefore, I first estimate the following models,
e EVHAR

The EVHAR model is,
RV, = Oé’EVc,t + B1eRBVes—1 4 Bo e RVey—oji—5 + B3, RVet—gp—22 + €ct, (4)

where RV, ; is the log RV in time ¢ for commodity ¢, EV,, is the vector of the economic
variables in Eq. |3| and a constant, RV, ;_,;—, is the average log RV computed over the days
t —n tot — p (previous week and month); see (Corsi (2009).

e EVHEXP

The Heterogeneous Exponential of Bollerslev et al.| (2018a) is similar to the HAR as it uses
‘/;C;OM (G

mixtures of exponentially smoothed past log RV. Each term is computed as, R
500 .

> e,ue,ﬁ:iﬁ,som, with A = In (1 + Co;M)’ for decay rates A = 0.693,0.182,0.039, and 0.008
i=1

corresponding to centers of mass (CoM) of 1, 5, 22, and 125 days, respectively. The HEXP

is,
RVey = a,E‘/C’t + 71,CRV¢:,C;(1A141 + 72,CRV£(1A145 + VS,CRch(ij\l/[% + 74,CRV£Z]\1/[125 +€ct, (D)

e EVHARQ

The HARQ model uses the realized quarticity to account for measurement errors. I use the

following estimator for the log realized quarticity (hereafter, RQ;)["
1/A

ert
2 4"
RQ; = 3

1/A 2
> Tz’%t
=1
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I use the parsimonious version where only the first coefficient of the HAR is penalized for

measurement errors,

RVey = &'EV, + (0104 010,RQc—1) X RVey—1 402, RVey—ojt—5+ 03, RVey—6j1—22 +€ct, (6)

3.3.  Are the parameters time-varying?

e EVHAR-TV

To check whether parameters are time-varying, I use the semi-parametric, local kernel, es-
timation approach; see Chen et al. (2018)) and |Casas et al.| (2019). This method allows for
an estimation in system (SUR), which makes the comparison with the competing models
consistent. I use the Nadaraya-Watson (Nadaraya, |1964, Watson, 1964)) estimator, or local

constant specification. The estimator is,

i K (v — ) y;
ap (r) = Z:}@
j;

Y

h
Ky (x — ;)

where K is the Epanechnikov kernel for a bandwidth h. The procedure uses “leave-one-out
cross-validation” to select the optimal bandwidth. An additional advantage of the kernel
regression is that the variance covariance matrix of errors for the feasible generalized least

squares (FGLS) is itself time-varying, with a bandwith similarly selected. The model is,
RVey =o' (1) EVey + 610 (1) RVey1 + 0o (1) RVey—op—5 + 03¢ (1) RV, 4—gjt—20 + €ct, (7)

where the coefficients a are now time-varying, and dependent on the smoothing variable

Ty = %,t =1,2,...,T, where T is the sample size.

e EVHARQ-TV

The following model nests time-varying parameters and measurement errors, penalizing the
first term of the HAR-TV with the (log) realized quarticity. The model is,

RVoy =o' (1) EVey + (61,0 (1) + 010, (1) RQep—1) X RVeyo1 + doc (1) RVey—op—5+

(8)
¢3¢ (1) RV _6jt—22 + €cyt;
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3.4. Data and descriptive statistics
3.4.1.  Data and variable definition

From the Barchart API, I download 5-minute closing prices of the nearby and first de-
ferred commodity futures contracts from May 6, 2008 to January 18, 2019E I choose a
cross-section of nine contracts evenly spread in three main subgroups, i.e., agriculture (wheat,
corn, and soybeans), energy (WTI crude oil, natural gas, and heating oil), and metal (cop-
per, gold, and silver).m These contracts have the highest open interest and turnover in their
own subgroup.@ Contrary to daily computations of futures price changes, that must account
for the regular contract expiry, the intraday volatility computation does not require to roll
the position from the nearby to the first deferred contract the day prior to maturity. In
unreported robustness tests, I roll the nearby onto the first deferred five business days before
maturity, with virtually the same results. Previous research on futures price changes justify
this procedure because of possible market squeezes and thinly traded contracts immediately
before the maturity. The data includes a time-stamp and the maturity date of each contract.

I compute 5-minute log price changes for each nearby futures contract available as r.; ; =

N _ ¢N
Cat7.j cztnj*

commodity, day, and time of the observation, respectively. 1 compute the arithmetic RV
(ARV) as,

; where f is the log of the futures price and the subscripts ¢, ¢ and j stand for

ARV, =

and the log RV (RV) as,
RV.; =In ARV,

where 1/a is the number of observations available given the market open hours of each con-
tract.|E| I choose the 5-minute sampling given that the previous literature documents its

performance over alternative frequencies (see, e.g., Liu et al.| 2015).@

[Insert Table (1| here]

Whttps:/ /www.barchart.com/

2T report the contracts specifications in Appendix, Table

13See Appendix, Table

4 There are 288 observations per day.

15Summary statistics in Appendix, Table also show that it is a good compromise across the nine
contracts, when compared to alternative frequencies.
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3.4.2.  Summary statistics of 5-minute RV and daily market data

Table [1| compares both distributional and memory properties of the arithmetic (Panel A)
and log RV (Panel B). The daily mean of the arithmetic RV of commodity futures ranges
from 1.02% (gold) to 2.72% (natural gas). The RV of commodity futures exceed those found
in the previous literature for exchange rates, sovereign bonds, and stock indices. Instead,
they are included in the range of typical RV found for large traded stocks. For instance,
Andersen et al.| (2007) find a mean arithmetic RV for the period 1986-2002 of 0.5% for
the US T-Bond, of 0.67% for the Deutsche-Mark/USD exchange rate, and of 0.93% for the
SP-500. On the other hand, Bollerslev et al.| (2016]) find that over the 1997-2013 period,
the mean arithmetic RV of 27 Dow-Jones stocks is in the 1.68%-5.42% range. Buccheri
and Corsi| (2019) find a similar range, albeit larger (0.95%-11.10%), for 18 NYSE stocks
over the 2006-2014 period. Overall, the null of normality is rejected for both arithmetic
and log RV. However, in line with |Andersen et al.| (2003), the log RV distribution is much
closer to normality than that of the arithmetic RV. The skewness of log RV is at least twice
smaller compared to that of the arithmetic RV, and up to eight times smaller for the crude
oil contract. The excess kurtosis of the log RV is also much smaller (by up to two orders of
magnitude for the crude oil contract). Moreover, the persistence increases when using the
log in place of arithmetic RV. The Ljung-Box statistic raises by up to twofold, except for the
silver contract where it is slightly reduced. The log-periodogram parameter of log RV is also
superior for agriculture and energy, but not for the metal products. Overall, the memory
properties of the arithmetic and log RV are similar to the previous results found for exchange
rates (see Andersen et al., 2007, |2003)), SP-500, and US T-Bond; see |/Andersen et al.| (2007).
The bottom part of Panel B reports the distribution and memory-related statistics for the
“significant” jumps J; and the diffusion component C; (residual) of log RV, computed for
a critical value of 0.1%. In line with |Andersen et al| (2007), the memory component of
the log RV (Ljung-Box statistic and log-periodogram parameter) almost fully lies in the
diffusion component. Also, the Ljung-Box test-statistic for the nine commodities has the
same order of magnitude than that of the SP-500, albeit lower. Finally, the distribution of
J; is leptokurtic, whereas that of C} is similar to the log RV distribution.

[Insert Table [2]| here]

Table |2 reports the four moments of the distribution for the nine nearby futures contracts.
The average log price changes (Panel A) is close to zero over the sample period, for all
contracts. Similar to financial securities, their distributions strongly departs from normal-

ity, with an average standard deviation greatly exceeding the mean, and with an important
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excess kurtosis, from 1.93 (wheat), and up to 17.04 (corn). Interestingly, the skewness that
has long been perceived as positive in commodity futures along with positive excess returns
(Gorton and Rouwenhorst, 2006), also range from -1.17 (soybeans) to 0.33 (natural gas).
I additionally provide the proportion of days during which the contracts are in contango
(positive slope between nearby and first deferred contracts) which stands between 60% (soy-
beans) and 98% (wheat). These statistics differ from the classical view (see, e.g., Keynes|
1930), according to which agricultural products are more subject to contango, because of
their important storage costs. Finally, I report the optimal sampling frequency, to identify
the optimal trade-off between resolution and market microstructure noise; see |Ait-Sahalia
et al.| (2005). This optimal sampling is roughly related to the market trading volume (Panel
B), minutes per day that have at least a transaction (Panel C), and bid-ask spread (Panel
D). In brief, these results tend to indicate that the higher the trading activity (turnover
and transactions), the lower the bid-ask spread and the optimal sampling frequency. In the
remainder of the article, I define RV as the log RV computed with a 5-minute sampling
frequency.

In Appendix, Table I report the summary statistics of the RV, with alternative sam-
pling frequencies of 1-, 5-, 15-, and 60-min. It verifies the good compromise that provides
the 5-min sampling, both in terms of distributional and memory properties. The 5-min fre-
quency remains also superior to the aggregated measure that averages all the aforementioned
variables which is reported at the bottom of the Table; see Andersen et al.| (2011b)).

4. Results

4.1.  In-sample estimation
4.1.1. EV and EVHAR

I estimate all models with SUR (using FGLS) for the nine commodities. Table |3|reports
the coefficient estimates of the EV (Eq. [3) and the EVHAR (Eq. ) models.

[Insert Table [3] here]

In the EV specification, the monthly dummies associated with agricultural products (July)

and natural gas (January) contracts are positive and statistically significant at the 1% level.
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This result is consistent with the uncertainty resolution hypothesis; see /Anderson and Dan-
thine (1983)). Second, I find clear evidence of a positive relationship between the time to
maturity and volatility. For seven out of the nine contracts, the corresponding coefficients
are statistically significant at the 1% level. The wheat and crude oil contracts do not show
statistical significance at the 10% level. Third, in line with Kogan et al| (2009) and Hau-
gom et al. (2014), I find that the magnitude of the slope matters, but not its sign, for the
crude oil contract. SL loads positively and significantly, in concurrence with a significantly
negative interaction term with the backwardation dummy, SL x B. This indicates that
both contango and backwardation market are positive predictors of RV, thus supporting the
“v-shape” hypothesis. This pattern is present for the crude oil, heating oil, natural gas, and
copper contracts. The contango slope coefficient SL of the wheat contract is also positive
and significant at the 1% level, but not the backwardation slope coefficients. Interestingly,
the coefficient for SL is negative and significant at the 1% level for the corn, gold, and silver
contract, thereby showing a negative contango-RV relationship. The explanatory power of
the EV model also varies across contracts, with adjusted R? for individual equations ranging
from 2% (copper) to 26% (crude oil).

When [ include the EV into the HAR, I find that the explanatory power of RV is vastly
improved, with adjusted R? ranging from 33% (soybeans) to 75% (crude oil). Consistently,
the likelihood ratio EVHAR/gar that tests whether the EV coefficients are nil is rejected
at the 1% level, which points to a significant benefit for including these variables["| The
HAR coefficients closely align with those of |Andersen et al. (2007) for the DEM/USD ex-
change rate, SP-500, and US T-Bond. Autoregressive terms are statistically significant at
the 1% level. The magnitude of the monthly dummies decreases by at least threefold. Their
statistical significance is reduced, at the 5% level for the agricultural products but remain
statistically significant at the 1% level for the natural gas. Similarly, the time to matu-
rity coefficients only maintain statistical significance at the 1% level across metal products
(and for the soybeans contract, at the 5% level). Interestingly, the size of the slope-related
coefficients decreases, are still inconsistent across metal products, but remain of the same
sign. The EV coefficients decline in the EVHAR specification. It indicates that the memory
properties already capture most of EV-related effects, from both futures markets (time to

maturity) and supply and demand (seasonality and term structure slope) perspectives.

4.1.2.  Alternative autoregressive specifications

Table [] reports the joint estimation of the EVHEXP (Eq. and EVHARQ (Eq. [0)

models.

161 report the results of the estimation of the restricted HAR specification in Appendix, Table
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[Insert Table [4] here]

The inclusion of the realized quarticity affects further the EV coefficients. First, the coeffi-
cient of the monthly dummy is statistically significant at the 1% (5%) level for the natural
gas (agricultural products). The coefficients corresponding to the time to maturity decline
more drastically, by twofold for the silver contract, by threefold for the gold contract. This
suggests that measurement errors are also related to the contract maturity. The coefficient
related to quarticity is also statistically significant at the 1% level for all contracts subject to
a (positive) time to maturity-RV relationship in the simple EV model (except for the silver
contract). Finally, the coefficients associated to the slope decrease further after the inclu-
sion of the realized quarticity but not consistently across contracts. This makes it difficult
to relate the realized quarticity to the level of the term structure. Last, the explanatory
power induced by the realized quarticity inclusion increases further. Adjusted R? of individ-
ual equations are up to three percentage points with respect to the EVHAR version. The
likelihood ratio EVHARQ/maRQ, which tests whether the EV coefficients are nil in the HARQ
specification, is rejected at the 1% level. This points again to a significant benefit for the
EV inclusion[”]

As expected, given their lags, HEXP variables particularly impact the cyclical EVs,
monthly dummies and time to maturity, but do not decrease the coefficients as much as the
HARQ. In particular for the metal groups, the time to maturity coefficients are statistically
significant at the 1% level. Similarly, the monthly dummies of the four contracts remain
larger and more statistically significant for the EVHEXP than for the EVHARQ. The HEXP
coefficients themselves show that most of the variance is explained by the first lag (1-day
CoM). The coefficients of 5-days CoM are statistically insignificant except for the metal
products and the natural gas contracts, whereas the one of 25-days CoM is statistically
significant at the 1% level for seven of the nine contracts. The coefficients for the 125-
days CoM is negative for all “seasonal” commodities (agricultural products and natural
gas contracts), but only statistically significant at the 1% level for the soybeans contract.
Indeed, this variable is centered with a lag of half a year, and thereby its negative coefficient
confirms the seasonal structure of volatility. This parameter remains instead positive (and
statistically significant at the 1% level) for the heating oil and silver contracts, which I did
not hypothesize to be seasonal. Finally, the EVHEXP underperforms both EVHAR and

17T report the results of the estimation of the restricted HARQ specification in Appendix, Table
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EVHARQ specifications, with adjusted R? of individual equations that are five percentage
points lower (except for metal products). Along with these results, the OLS and McElroy R?
for the EVHEXP system remain lower than those of EVHAR and EHVARQ specifications.
Finally, the likelihood ratio test is statistically significant at the 1% level, which implies a
larger benefit of the EV inclusion in the HEXP specification ||

4.1.3.  Time-varying coefficients

Table [5| reports the results of the estimations of the EVHAR and EVHARQ specifica-
tions, in which the parameters are allowed to be time-varying (EVHAR-TV, Eq. and
EVHARQ-TV, Eq. . The fact that all coefficients vary permits to make inference on their
stability over time, but also to analyze whether the previously documented cyclical effects
are linear. I report the averages of the parameters across time and their standard error in

square brackets.

[Insert Table |5 here]

In the time-varying specifications, I find that the coefficient variations are the largest for
the intercept in all nine equations, with up to a 29% standard deviation for the crude oil
contract in the EVHAR—TV.@ The variation intensity for the first autoregressive parameter
RV;_; is much lower on average across contracts, with a maximum of 5% for the silver
and a minimum of 1% for the crude and heating oil contract. The coefficients for the
week and month lags lie in the same range. This difference in time-variation intensity is
in line with the results of Buccheri and Corsi (2019) in their score-driven HAR (SHAR) |
The means of the parameters of the EVHAR(Q)-TV are closely aligned on those of the
static EVHAR(Q) version. The EVHARQ-TV explanatory power over the EVHAR-TV is
improved, similar to the static comparison. The likelihood ratio tests EVHAR-TV/gar—7v and
EVHARQ-TV /g ArQ-T1Vv are both significant at the 1% level.E| The pseudo R? of the individual
equations are mostly unchanged, with upward or downward revision by one percentage point
at most. Yet, the standard deviations of HAR-TV and HARQ-TV- related parameters are

considerably reduced when the EVs are included. For instance, the standard deviation of the

18] report the results of the estimation of the restricted HEXP specification in Appendix, Table

19Gee Appendix, Figure

29Given the low variations of both autoregressive variables and EV, I do not report the related plots.
These results are available upon request.

21T report the results of the estimation of the restricted HAR-TV and HARQ-TV in Appendix, Table
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intercept of the silver contract decreases from 29% in the HAR-TV, to 4% in the EVHAR-
TV.

Given the high variation of the intercept, it is likely that the cyclical components of the
EV (time to maturity and monthly dummies) are captured by the time-varying specifications.
However, in both models, the EV parameters remain time-varying. The time to maturity
coefficients, for instance, have standard deviations of up to 53% for the corn contract. This
points to a non-linear relationship between the time to maturity and the level of RV, as
documented by Hong (2000). The term structure-related coefficients remain heterogeneous,
with only five contracts that display slope and interaction parameters following the “v-shape”
pattern (jointly positive and negative, respectively).

Finally, I report in square brackets the standard errors of the time-varying coefficients
and the corresponding statistical significance level of a t-test that the coefficient significantly
departs from zero. For all time-varying specifications and coefficients, I find statistical sig-
nificance at the 1% level. This points to the fact that even when the coefficients are small,
they are mildly time-varying. The pseudo R? of the individual equations increase by up to
four percentage points (natural gas contract).

To summarize the aforementioned results, I find that the EV do explain the RV but with
a much lower explanatory power than any autoregressive specification. The signs of the
coefficients and their statistical significance strongly support the uncertainty resolution. On
the other hand, I uncover a positive time to maturity-RV relationship, both statistically and
economically significant, thereby rejecting the Samuelson hypothesis. Finally, the results for
the term structure variables support both the theory of storage and the “v-shape” hypothe-
ses, but in only four of the nine commodity contracts. When the autoregressive specifications
are introduced, these relationships are significantly reduced regarding time to maturity and
monthly dummies coefficients. They vanish in the case of the term structure slope. This
indicates that the information content of the EV is already captured by the various lags of
the HAR(Q) and HEXP specifications. Yet, the unrestricted versions, which include EV,
improve the explanatory power of the restricted autoregressive models in all cases, with
likelihood ratio tests always statistically significant at the 1% level. The following in- and
out-of-sample forecast analysis disentangles further the contribution of the EV in the RV

modeling significant both statistically and economically.

4.2.  In-sample performance

I compute in-sample forecasts at the one-day, one-week, and one-month horizons, jointly

for the 11 models; see, e.g.,|Andersen et al.| (2007)). I keep the time to maturity and monthly
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dummies contemporaneous because of their deterministic characteristics. Table[6]reports the
results of the Model Confidence Set (MCS) procedure, which allows for direct comparison
performance of all models at once, and for different losses: mean squared errors (MSE), mean
absolute errors (MAE) and QLIKE; see Hansen, Lunde, and Nason| (2011)), [Patton| (2011).

[Insert Table [6] here]

Table [, Panel A shows the tests on the one-day ahead forecasts. The HARQ-TV is superior
for the three losses considered, and the EVHARQ ranks second, although the MAE losses are
excluded from the 90% confidence interval. The one-week and one-month ahead comparisons
indicate that the HAR-TV is superior, excluding the one-month ahead MSE, for which the
HARQ-TV ranks first. These results are in line with |Bollerslev et al.| (2016) who find that
the restricted HARQ (with the realized quarticity applied only to the one-day lag) is superior
at the one-day horizon over the “full” HARQ), for the SP-500 (MSE) and for 27 Dow-Jones
stocks (MSE and QLIKE). However, for longer horizons they find the converse. Thus, across
all models and in-sample configurations, only a single EV-based model (the EVHARQ) steps
up in the 90% confidence set for the MSE and QLIKE losses, at the one-day horizon. Finally,
the losses are consistently smaller (greater) in the static (time-varying) parameters versions of
the models, when the EV is included. This points to the fact that time-varying specifications

appropriately capture the time variations in EV.

4.8.  Out-of-sample performance

I compute out-of-sample forecasts based on a calibration window that spans the April
22, 2010-January 30, 2013 period for the one-day, one-week, and one-month horizon. I
obtain the static models forecasts computing the expectations of RV, given the parameters
estimated from the calibration window. For the time-varying specifications, I use the multi-
stage non parametric predictor approach; see Chen, Yang, and Hafner| (2004) and |Chen et al.
(2018). In this procedure, I first compute the one-step ahead conditional expectations and
re-use them to select the new conditional optimal bandwidth for the next step(s), iteratively.
Next, I use the MCS procedure and the modified Diebold-Mariano test (Harvey, Leybourne,
and Newbold}, [1997) to benchmark these out-of-sample forecasts; see Diebold and Mariano
(1995)). These results are reported in Table [7} In this analysis, I add the RiskMetrics model

as a generic benchmark, given its wide use in risk management”] The RiskMetrics model

22The RiskMetrics methodology can be found here: https://www.msci.com/documents/10199/5915b101-
4206-4ba0-aee2-3449d5c7e95a
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can be seen as a parsimonious version of the HEXP of [Bollerslev et al.| (2018a), with a single
exponentially smoothed lagged variable. The decay rate X is set at 6%, which corresponds to
a 16-days CoM. Although the RiskMetrics is not calibrated for log variances or volatilities,
in unreported test, I find that this decay rate remains a good trade-off for log realized

volatilities. The RiskMetrics equation is,

RV,y = poc + p1, RV + ey,

[Insert Table [7] here]

Table [7, Panel A shows that the HARQ strictly dominates all other models at the one-day
and one-week horizon. Additionally, I find that the benefit of the EV inclusion vanishes
over these two horizons. However, at the one-month horizon, the best performing model
is the EVHARQ-TV, with an MSE (MAE) almost three (two) times lower than the one
of the HARQ-TV. This forecast improvement, arising from the EV inclusion, is present in
almost all models and for all losses. This supports the benefits of including these exogenous
variables when the time horizon increases. These forecasting improvements may also arise
from the fact that the time to maturity and monthly dummies are deterministic variables.
As they are readily available for the n-ahead periods, they could improve the forecasting
power at longer horizons. However, such interpretation departs from the concept of market
efficiency. Finally, Table [7, Panel B reports the results of a one-to-one direct comparison of
the 12 models using the modified Diebold-Mariano test, at the one-day ahead horizon and
for the MSE loss. These results indicate a strict dominance of the HARQ and EVHARQ-TV
models. When these two models are compared, the x? statistic is insignificant (-1.31), hence
supporting their equally superior forecasting ability at this horizon, in line with previous

results.

5. Tail-risk modeling

I now use the out-of-sample forecasts from the 12 models to compare their ability to
forecast the (left) tail risk. A large strand of literature adopts the expected shortfall (ES)
methodology, in place of the value at risk (VaR). I adopt the multi-quantile regression ap-
proach; see, e.g., Bayer and Dimitriadis| (2020)), [Couperier and Leymarie| (2020). It allows
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to model the left tail of a distribution with higher granularity as any sequence of coverage
levels may be used. Table |8 reports the p-values of tests on coefficients biases from forecast
accuracy panel regressions, RV; = o + BE‘\/}, where RV, = [RVi4, RVay, ..., RVy,]'. The

tests are for the following four null hypotheses:

p

Ho.z, 222 (Bo (1) + (B (7)) =p

=1

Hos > fo(r;) =0and 3 By (1) = p
=1 j=1

Hyr: Zp: Bo (Tj) =0
j=1

Ho,s : Zp: B (Tj) =D
j=1

Where p is the number of coverage levels selected, and 7 is the corresponding level for
7 =1,2,...,p. In other words, J; tests the null hypothesis that the sum of the intercepts and
slopes sum to p, Js that the sum of the intercepts and slopes sum to zero and p, respectively,

and I (S) that the sum of the intercepts (slopes) sum to zero (p), individually.

[Insert Table (8| here]

The J5 test, which is similar to a Mincer-Zarnowitz regression, albeit less restrictive, rejects
the null hypothesis for the EV, the time-varying models and the Riskl\/[etrics@ This is
the case when the coverage is set at p = 1, equivalent to the 97.5% VaR, and for higher
granularities up until p = 6. The alternative Wald test, J1 whose null hypothesis is that
the sums of all multi-quantile regressions parameters (both intercepts and coefficients) are
equals to p, is only rejected for the HAR-TV and p = 2, at the 10% level. Similarly, the
Wald tests I and S for which the null hypotheses is that the sums of the intercepts and
slopes are jointly equals to zero and p, respectively are almost significant at the 5% level,
excluding the EVHARQ in its I test. Therefore, I focus on the rejection rates of the J, test,
to compare the relative performance of the models. First, the static parameter version of the
HAR delivers the highest p-values (minimum of 0.25). Interestingly, the p-value decreases

as the coverage increases, in line with |(Couperier and Leymarie| (2020)) and their original test

23The Mincer-Zarnowitz test is a particular case of the J,, when there is a single coverage level, i.e.,
p=1.
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on AR (1) and GARCH (1,1) models. In static parameter (time-varying) specifications, the
inclusion of the EV decreases (increases) the expected-shortfall forecasting performance [
I conclude the tail risk section with the analysis of the results of Table[9, where I present
the percentage of violations occurring over the sample for each contract, for a single quantile
regression, with a coverage level set at the 97.5% VaR. The horizons of the out-of-sample

forecasts is of one day.

[Insert Table [9] here]

On average, the EVHARQ provides the lowest violation percentage at the 97.5% VaR level,
but there are important disparities across contracts. There is no systematic benefit arising
from the EV inclusion. Similarly, the most complex time-varying specifications do not deliver
better forecasts in terms of VaR violations. Finally, in four contracts, the single EV model
yields the lowest violation percentages. Despite the fact that these results stand for a single
coverage level and do not encompass an entire expected shortfall violation, they point to

some benefits of EV inclusion when modeling tail risk.

6. Conclusion

This research aims to test whether economic variables, theoretically related to the volatil-
ity of commodity futures contracts, add value to autoregressive RV models, selected for their
forecasting performance in other asset classes. Using joint estimations for nine commodi-
ties, my results strongly support the uncertainty resolution hypothesis; see |[Anderson and
Danthine| (1983) and |Anderson (1985). Second, I find a strong rejection of the Samuelson
hypothesis (Samuelson, (1976) with results indicating that the RV is positively related to time
to maturity. Third, the inclusion of the term structure slope in the regressions yields mixed
results. On the one hand, I find support for the theory of storage and “v-shape” hypothesis
of Kogan et al. (2009)) for the heating oil, natural gas, copper, and crude oil contracts; see
alsoHaugom et al.[(2014)). On the other hand, I do not identify any support for the soybeans,
wheat, and gold contracts and even opposite results in the cases of corn and silver contracts,

for which contango commands a lower RV. However, in the case of metals, it is likely that

24 Appendix, Table reports the coefficients of the predictive regressions for each coverage level T,
individually, when the number of quantile is set to p = 4. It also shows that while all specifications yield a
significant forecasting bias, the static HAR and EVHAR models generate the lowest, and this for all coverage
levels used.

23



the determinants of the term structure are mostly unrelated to supply and demand and
their inherent storage issues. Finally, the performance of the economic variables considered
alone, lies far below those of all autoregressive models, including their most parsimonious
versions such as RiskMetrics. Similarly, when I nest the EV in autoregressive models, I
find marginal gains in explanatory power, both in terms of R? and losses. Moreover, all
likelihood ratio tests of unrestricted EV wvs. restricted specifications are significant at the 1%
level. In out-of-sample tests, the economic variables improve the forecast accuracy at longer
time horizon (one-month ahead), even in specifications accounting for measurement errors
and time-varying coefficients together. These gains vanish for expected shortfall backtests
from multi-quantile regressions. Yet, surprisingly, in four out of the nine contracts, the EV
model alone generates less 97.5% VaR violations than all other models, and provide good
results for five other contracts. I leave for future research the exploration of whether exoge-
nous, economically-motivated, variables related to volatility theories provide similar results

in other asset classes.
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Table 1: Summary statistics: Daily RV

This table reports summary statistics for four estimators of daily realized volatility. These estimators are based on 5-minute
log price changes of the nearby futures commodity contract. I display these statistics for the arithmetic realized volatility
ARV, (Panel A), and the log realized volatility RV; (Panel B). In Panel B, I also split the RV in log “significant” jumps
% x In J; and in log continuous diffusion % X In Cy components. I compute J; and C; as in |Andersen et al.| (2007, p. 710),
with a critical value of 0.1%. Each panel displays the first four moments of the distribution, the Jarque-Bera statistic J B,
the Ljung-Box statistic (20*® order serial correlation) Q(20), and the parameter d of the log-periodogram regression (Geweke
and Porter-Hudak| [1983], [Robinson, (1995) based on a bandwidth exponent of 4/5 as in |[Andersen et al| (2003). The sam-

ple period is May 5, 2008—April 1, 2019 for nine commodity futures contracts. The number of observations per contract is 2755.

Agriculture Energy Metal
Corn (C) Soybeans (S) Wheat (W) WTI crude oil (CL) Heating oil (HO) Natural Gas (NG) Gold (GC) Copper (HG) Silver (SI)
Panel A
Daily arithmetic realized volatility, ARV,
Mean% 1.72 1.41 1.94 2.06 1.80 2.72 1.02 1.57 1.83
% 1.01 0.80 0.84 1.21 0.93 1.36 0.58 0.93 1.06
Skewness 7.50 4.86 2.41 4.13 2.82 4.35 2.94 2.84 2.96
Kurtosis 145.87 52.33 11.81 49.42 21.66 46.60 16.78 11.57 16.52
JB 2,471,897 325,629 18,710 288,677 57,598 258,315 36, 358 19,095 35,395
Q(20) 4,856 6,723 7,139 26,574 25,471 8,768 18,971 27,365 15,973
d 0.24 0.35 0.32 0.50 0.50 0.41 0.44 0.59 0.49
Panel B
Daily logarithmic realized volatility, RV;
Mean% —415.13 —434.90 —400.54 —400.03 —412.02 —369.11 —468.93 —427.66 —412.04
% 46.48 46.19 41.54 46.69 43.93 39.85 50.87 46.46 52.02
Skewness 2.06 2.37 2.16 0.51 0.42 0.55 1.61 0.65 0.58
Kurtosis 13.73 17.02 18.39 0.61 0.36 1.01 13.22 1.14 7.55
JB 23,627 35,914 41,036 161 95 259 21,286 343 6,706
Q(20) 11,283 10,703 8,201 32,443 31,598 18,330 12,106 23,773 11,329
d 0.34 0.40 0.32 0.52 0.53 0.51 0.33 0.51 0.38
Daily logarithmic significant jumps at 0.1%, % x In J;

Mean% —176.68 —186.85 —153.55 —85.97 —140.97 —113.07 —239.81 —210.52 —162.31
% 226.56 232.20 211.24 179.99 215.66 185.86 249.65 229.00 214.20
Skewness —0.55 —0.48 —0.69 —1.65 —0.91 —1.08 —0.12 —0.21 —0.62
Kurtosis —1.62 —1.70 —1.45 0.82 —1.09 —0.73 —-1.91 —1.87 —1.51
JB 439 436 458 1,334 519 600 426 421 437
Q20) 120 273 73 100 220 84 1,839 1,817 582

d 0.10 0.08 0.08 0.05 0.02 0.01 0.13 0.15 0.11

Daily logarithmic continuous component at 0.1%, % x InC}

Mean% —428.25 —451.39 —416.08 —403.84 —418.74 —376.33 —507.84 —468.77 —442.42
% 48.63 50.24 50.06 46.74 44.33 38.04 80.93 81.57 77.21
Skewness 1.34 1.32 0.36 0.47 0.21 0.31 —0.56 —0.93 —0.83
Kurtosis 12.98 14.51 12.26 0.45 0.37 0.27 4.18 1.73 3.41
JB 20,217 25,027 17,345 124 37 53 2,156 745 1,652
Q(20) 10,277 7,173 3,969 33,615 29,694 21,764 4,083 7,481 3,931
d 0.37 0.37 0.34 0.54 0.48 0.52 0.35 0.45 0.33
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Table 2: Summary statistics: Daily market-level data

This table reports summary statistics of daily data for nine nearby commodity futures contracts. I display the statistics
for the log price changes (Panel A), the trading volume (Panel B), the number of minutes with at least one transaction
(Panel C), and the bid-ask spread estimated on 1-minute data with the methodology (Panel D). I report the
first four moments of the distributions, the minima, and the maxima. Panel A also reports the Ljung-Box statistic (20"
order serial correlation for the log price changes) (Q(20) and the proportion of days during which the nearest term structure
was in contango. Finally, I report the optimal sampling in minutes based on |Alt-Sahalia et al.| (2005, p. 361), assuming that
the microstructure noise is gaussian and only driven by the bid-ask spread. The sample period is May 5, 2008—April 1, 2019.
The number of observations per contract is 2755.

Agriculture Energy Metal
Corn (C)  Soybeans (S)  Wheat (W)  WTI crude oil (CL)  Heating oil (HO)  Natural Gas (NG)  Gold (GC)  Copper (HG)  Silver (SI)

Panel A: Daily log price changes of nearby contracts

Mean% —0.02 —0.01 —0.02 —0.02 —0.02 —0.05 0.01 —0.01 —0.004
% 1.92 1.60 2.07 2.38 1.93 2.96 1.12 1.73 1.99
Skewness —-1.07 —1.17 0.16 0.05 —0.17 0.33 —0.07 —0.16 —0.99
Kurtosis 17.04 9.30 1.93 4.19 3.10 3.25 7.52 4.01 7.55
Q(20) 26.54 31.48 31.37 52.41 30.09 60.09 17.29 74.53 22.54
Contango% 85.30 60.16 97.55 80.50 74.52 85.36 71.62 62.39 68.68
Optimal sampling (min) 43 20 30 21 17 29 14 18 25

Panel B: Trading volume (in million USD)

Mean 1,466.37 2,151.16 827.84 16, 506.63 1,658.83 2,548.02 8,529.10 1,948.14 2,699.74
o 1,223.27 2,111.44 621.02 9,594.49 1,172.04 1,461.08 11,200.83 2,205.74 3,003.31
Skewness 0.86 1.06 0.60 0.54 0.57 1.31 1.34 1.42 2.13
Kurtosis 0.82 1.81 0.64 0.89 —0.39 5.47 2.01 2.96 11.25
Min 0.03 0.06 0.04 0.13 0.08 0.60 0.08 0.07 0.07
Max 8,277.70 15,145.34 4,330.91 73,000.47 6,605.90 15,031.34 94, 868.16 16,387.95 35,581.24

Panel C: Minutes with at least one transaction

Mean 528.16 518.13 509.41 1,201.31 675.81 898.16 679.75 704.80 744.90
o 254.11 316.54 264.43 308.60 260.95 258.02 604.09 556.00 552.40
Skewness —0.47 —0.17 —0.61 —0.99 —0.60 —0.52 0.22 —0.15 —0.31
Kurtosis —0.70 —1.28 —0.67 2.71 0.49 2.50 —1.48 —1.54 —1.50
Min 1 1 1 1 1 1 1 1 1

Mazx 1,158 21,226 1,051 1,395 1,413 1,416 1,394 1,427 1,392

Panel D: Bid-ask spread (in bps)

Mean 2.67 1.27 2.19 1.93 1.33 2.99 0.68 1.26 1.82
o 1.73 1.31 1.86 1.73 1.46 2.42 0.85 1.43 1.80
Skewness 0.65 2.35 2.54 1.55 1.85 3.91 2.65 2.39 2.00
Kurtosis 3.62 13.64 28.30 4.92 7.16 63.38 14.26 10.30 8.48
Min 0.01 0.004 0.01 0.04 0.09 0.15 0.002 0.002 0.0002
Max 16.61 16.04 30.23 14.98 15.65 52.10 10.19 13.37 17.41
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Figure 1: Unconditional monthly average RV

These plots display the monthly average of daily RV for the nearby futures contract written on corn,
soybeans, wheat, and natural gas. The red line represents the average and the gray area represents the 90%
confidence bands. For a better alignment, the plot of the natural gas contract is centered in January. The
sample period is May 5, 2008—April 1, 2019. The number of observations per contract is 2755.
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Appendix

Table Al: Description of futures contracts

This table reports the specifications of the futures contracts written on the nine selected commodities.
The specifications include their trading venue, ticker, underlying commodity and unit. I also report their

maturity months with the appropriate letter code.

Ticker Trading venue Underlying Unit Maturity
Agriculture

C CBT Corn bu (5,000) HKNUZ

S CBT Soybeans bu (5,000) FHKNQUX

W CBT Chicago wheat bu (5,000) HKNUZ
Energy

CL NYMEX/ICE  WTI crude oil bbl (1,000) FGHJKMNQUVXZ

HO NYMEX Heating oil gal (42,000) FGHJKMNQUVXZ

NG NYMEX/ICE Natural gas MMBtu (10,000) FGHJKMNQUVXZ
Metal

GC CMX Gold oz (100) GIMQVZ

HG COMEX Copper 1b (25,000) FGHJKMNQUVXZ

SI CMX Silver oz (5,000) FHKNUZ

Letter code: F = January, G = February, H = Mars, J = April, K = May, M = June,
N = July, Q = August, U = September, V = October, X = November, Z = December.
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Table A3: Summary statistics: Daily RV with alternative sampling frequency

This table reports statistics on daily log realized volatility sampled at 1, 5, 15, and 60 minute-intervals in panels A to D,
respectively. In panel E; I add the statistics for the average of these four measures, as in |Andersen et al. (2011b). For each
panel, I report the four moments of the distribution, the Jarque-Bera statistic (JB x?), the Ljung-Box statistic for the 20"
order serial correlation (Q(20)), and the parameter of the log-periodogram regression based on a bandwith exponent of 4/5 (d),
as in|Andersen et al.| (2003)). The sample period is May 5, 2008—April 1, 2019. The number of observations per contract is 2755.

Agriculture Energy Metal
Corn (C)  Soybeans (S)  Wheat (W)  WTI crude oil (CL)  Heating oil (HO) Natural Gas (NG) Gold (GC) Copper (HG)  Silver (SI)

Panel A: RV, 1-minute sampling

Mean% —402.74 —430.24 —393.64 —396.43 —409.49 —363.35 —466.62 —424.40 —406.93
% 42.72 46.16 40.80 46.28 44.28 38.46 50.95 46.48 51.43
Skewness 3.24 3.15 3.08 0.29 0.51 0.30 1.83 0.89 0.67
Kurtosis 25.50 24.11 27.48 1.96 3.95 3.41 15.20 3.52 9.34
JBY? 79, 586 71,432 91,174 481 1,916 1,379 28,121 1,784 10,245
Q(20) 7,995 9,645 7,340 32,279 29, 356 17,552 11,641 23,501 10,770
d 0.35 0.38 0.30 0.53 0.45 0.48 0.34 0.50 0.40

Panel B: RV, 5-minute sampling

Mean% —415.13 —434.90 —400.54 —400.03 —412.02 —369.11 —468.93 —427.66 —412.04
% 46.48 46.19 41.54 46.69 43.93 39.85 50.87 46.46 52.02
Skewness 2.06 2.37 2.16 0.51 0.42 0.55 1.61 0.65 0.58
Kurtosis 13.73 17.02 18.39 0.61 0.36 1.01 13.22 1.14 7.55
JBY? 23,626 35,914 41,036 161 95 259 21,286 343 6,706
Q(20) 11,283 10,703 8,201 32,443 31,598 18,330 12,106 23,773 11,329
d 0.34 0.40 0.32 0.52 0.53 0.51 0.33 0.51 0.38

Panel C: RV, 15-minute sampling

Mean% —421.47 —437.96 —404.39 —402.19 —414.20 —373.01 —470.73 —429.22 —414.93
% 50.33 47.83 43.27 47.97 45.23 41.54 52.02 47.27 52.95
Skewness 1.64 2.17 1.93 0.47 0.37 0.47 1.55 0.55 0.67
Kurtosis 10.42 15.17 16.09 0.53 0.37 1.02 12.22 0.91 6.59
JBY? 13,738 28,629 31,470 132 T 223 18,283 236 5,197
Q(20) 10, 848 9,618 7,178 29,330 28,077 15,463 11,447 21,689 10,863
d 0.35 0.39 0.31 0.51 0.48 0.44 0.31 0.49 0.37

Panel D: RV, 60-minute sampling

Mean% —427.89 —441.96 —409.07 —406.34 —418.90 —378.32 —475.29 —432.69 —419.19
% 56.01 52.20 48.10 51.65 49.39 47.09 55.49 50.68 56.73
Skewness 1.23 1.67 1.45 0.34 0.23 0.32 1.34 0.39 0.81
Kurtosis 7.13 11.01 10.89 0.39 0.26 0.58 9.67 0.74 5.56
JBY? 6,549 15,229 14,596 72 33 86 11,567 132 3,854
Q(20) 8,606 7,318 5,406 21,352 20,053 10,619 8,700 16,626 8,127
d 0.31 0.35 0.31 0.42 0.40 0.42 0.30 0.41 0.32

Panel E: RV, average of 1-, 5-, 15-, and 60-minute sampling

Mean% —414.66 —435.20 —400.61 —400.22 —412.68 —369.68 —469.49 —427.72 —412.20
% 45.93 46.20 41.28 46.88 44.33 40.14 51.17 46.66 51.57
Skewness 2.14 2.38 2.20 0.50 0.40 0.55 1.62 0.60 0.77
Kurtosis 14.40 17.07 18.86 0.56 0.34 1.05 12.90 1.04 6.87
JBY? 25,942 36,111 43,102 154 85 268 20,329 289 5,695
Q(20) 10,643 10,475 8,160 31,440 30,408 17,361 11,800 22,889 11,387
d 0.35 0.39 0.32 0.52 0.52 0.50 0.33 0.50 0.39
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Table A4: Average daily turnover and open interest over five years prior to the
sample

This table reports the average daily turnover and open interest in millions USD for 20 contracts components of the SP-GSCI

/ BCOM, prior to the sample period selection. The pre-sample period is January 1, 2003—April 30, 2008.

Energy WTI crude oil (CL)  Heating oil (HO)  Brent crude oil (LCO) Gasoil (LGO) Natural gas (NG) RBOB gasoline (RB)

Turnover 15,126.82 3,476.32 7,860.83 2,804.78 5,093.58 3,969.98

Open interest 28,209.41 8,962.40 15,468.90 7,704.32 16, 167.50 3,528.27

Agriculture Corn (C) Feeder cattle (FC)  Kansas wheat (KW) Live cattle (LC) Lean hogs (LH) Soybeans (S) Wheat (W)
Turnover 1,891.39 203.31 329.13 955.63 478.49 3,056.77 1,111.43
Open interest 10,752.81 1,192.12 2,208.12 6,597.15 2,756.31 10, 155.23 5,678.65
Metal Gold (GC) Copper (HG) Platinum (PL) Silver (SI)

Turnover 4,252.86 1227.43 227.20 1,300.46

Open interest 13, 488.65 3792.76 625.33 4,339.29

Soft Cocoa (CC) Cotton (CT) Coffee (KC) Orange juice (OJ)  Raw sugar (SB)

Turnover 177.56 467.97 602.04 58.25 626.54

Open interest 1,644.18 3,395.23 4,724.07 433.67 4,592.96
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Figure A8: Unconditional monthly average RV

These plots display the monthly average of daily RV for the nearby futures contract written on crude oil,
heating oil, gold, copper, and silver. The red line represents the average and the gray area represents the

90% confidence bands. The sample period is May 5, 2008-April 1, 2019. The number of observations per
contract is 2755.
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Figure A9: Time-varying intercepts in the EVHAR-TV model

This plot displays the pattern of time-varying intercepts in the joint estimation of the EVHAR-TV model
(SURE). The intercept unit is RV for the nine nearby futures contracts. The sample period is May 5,
2010-April 1, 2019. The number of observations per contract is 2755.
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